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Multirelaxation response of modulated phases in structural 
order-disorder systems 

0 Hud&, J Holakovskf, V Dvoidk and J Petzelt 
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2. U 180 40 
haha, Czech Republic 

Received 5 October 1994, in final form 21 Februv  1995 

Abstract. We study properties of multirelaxational phenomena originating due to interactions 
of modes in the inan"mesurate dielectrics of the on3er4isarder ty/pe described by the king-like 
model and the Bloch equations. Results found theoretically are discussed in relation to observed 
properties of some dielectric materials including "01. 

1. Introduction 

In general one may expect that domain-like structures in incommensurate dielectrics, 
which are formed near the lock in transition to the lower ferroelectric phase, should be 
responsible, at least partially, for distribution of the relaxation times in the incommensurate 
structures. Regions of domain walls are non-uniform which, together with the motion of the 
domain walls themselves, is responsible for such an expectation: non-homogeneity leads to 
dynamically coupled normal modes. Non-homogeneity is also present in the single-plane- 
wave region. Thus one may there expect that the relaxations are also coupled. The domain 
wall region leads to more complicated equations for description of dynamics of modes, 
which however are similar to the single-planewave case. Thus one may expect that results 
of the single plane wave may be qualitatively extended to the domain wall regime. In this 
paper we consider the single-plane-wave regime only. What is the resulting picture of the 
response in the single-plane-wave region? 

The response of the incommensurate phase may become very complex at low frequencies 
[I]: besides quasiparticle-like excitations dispersionless bands of excitations are expected 
to exist. The origin of such a response lies in the fragmentation of the excitation energy 
spectrum 111. 

Dynamics of dielectrics in which motion of some units between a finite small number 
of states (typically two) is responsible for an orderdisorder-type phase transition is usually 
described by using pseudospin formalism [2]. Indeed the phase transition between the 
ferroelectric phase and the phase with a sinusoidal modulation in NaN02 was described by 
an king-like model, see [3]. In general one can say [4] that the sinusoidal structure may 
be stabilized below some critical temperature T, if there exists a non-zero wavevector qo 
maximizing the quantity Jn = c, Jij exp(iq. (R, - R,)). Here Ji, are interaction energies 
between two units localized at lattice sites Ri and Rj. The dynamics of such a system is 
described in the simplest case by the quantum Ising-like and Heisenberg-like Hamiltonians. 
Both models describe correctly also classical orderdisorder structures at high temperatures. 
The excitation spectrum and response of the latter model was studied in [l] in the context 
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of magnetism. It was natural to extend the last-mentioned study to order-disorder-type 
materials described by the mentioned model Hamiltonians. Results of such an extension 
are described in 151. 

The complex dynamical susceptibility was calculated using the Bloch equations. The 
perturbative and non-perturbative approaches enabled the authors to derive formulae 
for susceptibility which display multirelaxational behaviour due to the coupling of the 
homogeneous polar soft mode to higher-order modes. To increase the number of 
types of material in which the studied phenomena may be confronted with reality it is 
necessary to understand the qualitative and-if possible alsc-quantitative behaviour of 
these multirelaxational phenomena and compare the expected properties with those observed 
in related dielectrics. Results of some numerical studies of multirelaxation phenomena due 
to interaction of modes and their comparison with experimental behaviour in some dielectric 
materials are the main content of this paper. Results of the studies presented in [5] and in this 
paper may serve as a basis for at least qualitative discussion of observed multirelaxational 
phenomena in several dielectrics with incommensurate structures. 

In the next section we display the main (mostly known) properties of the model which 
we study. In the third section some paraphase properties are described. They are useful for 
comparison with those of the incommensurate structure and serve for reference in the next 
sections of the paper. The last two sections are the main parts of this paper. The fourth 
section is devoted to the theoretical study of some properties of the incommensurate phase 
dynamics, namely the response of the struc!ure as displayed by the complex susceptibility 
is described. In the last section we discuss results of the preceding sections in connection 
to some of the related dielectrics including NaN02. 

2. Model 

The basic ingredients of the studied model Hamiltonian HT were described in [4] and 151. 
A similar model was used for the description of modulated structures in magnetism [6-121 
and in dielectrics ("02 I131 and "NI model 1141). Let us recall the form of the model 
Hamiltonian which is given by 

Here Sf are quantum operators describing pseudospin variables with eigenvalues Sf = * t f  
at lattice sites i, where i = 1, ..., Nbtt. We study a lattice with Njatr sites in which each site 
represents a fluctuating unit. 

Real materials, for example of the KDP or NaNq type, are characterized by more 
complicated structures and correspondingly are described by more complex models, [I51 
and [2]. We expect that our study of the simplified model may give results which will 
qualitatively demonstrate the expected effects in real materials. 

For simplicity we shall assume that the modulation occurs in the single direction (1,0,0) 
only. The modulation wavevector amplitude Q &a, where a is the basic lattice vector in 
the direction ( l ,O,  O), is determined by the free energy minimization. The Fourier transform 
of the interaction energy J ( q )  for q in the a direction is assumed to have the form: 

J ( q )  = 2Ji coS(q. a) + 232 cos(2q. a) + 4Jm. 

The interaction energy constants J1 and Jz describe interaction between the nearest and 
next-nearest neighbours, respectively. The constant Jpup describes interactions in directions 
perpendicular to (1.0,O). 



Multirelaxation response of modulated phases 5001 

The random-phaseapproximation-type analysis [4] of the basic part (1) of the 
Hamiltonian gives a description of the modulated state. The free energy is minimized 
at a given temperature T below some critical temperature T, given by kT, = J(Q)/4 
for those mean values of the pseudospin operators which describe the single-plane-wave 
modulated state 

(Si) = Scos(Qn + q5). (2) 
S is the small amplitude of the single plane wave, and q5 is an arbitrary phase. The 
modulation vector Q is found to be 

5- 

A 

The schematic phase diagram which shows regions of stability of the ferroelectric (F), 
antiferroelechic (A) and modulated phases (M) in the J I ,  Jz plane is given in figure 1. 

I 

F 

r 

-51 
Figure 1. The schematic phase diagram in the J I .  JI plane: regions of stability of the 
femcelectric (F), anrifemlearic (A) and modulated phases (M) are separated by the thick solid 
lines. 

The wavevector Q is incommensurate in many dielectric materials, e.g. Rb2ZnBr4 may 
be characterized by Q / k  U-+, see [16]. NaN02 may be characterized by Q/2n % 

immediately below Tc. see [17]. 
The dynamics of excitations was studied in [5] using Bloch equations for the motion of 

pseudospins. This method is thoroughly discussed in [4]. The explicit form of the equations 
of motion is 

iws(S:) = -- s(S:) - - ( I  -4(~:)') B 
TI ' [  4 

where S(S:) are mean values of amplitudes of fluctuating pseudospin at site i given by 
(Sf), = (S f )  + 6(S,')exp(iot), see [4]. Furthermore, /.L is the dipole moment of the 
elementary unit and TI is the longitudinal high-temperature relaxation time. The molecular 
field Hi at site i is given by 

Hj = @,O, Jij(SjT)) = (O,O, Hi). (5) 
J 
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A general time- and site-dependent electric field &(t) is applied to our system at the 
equilibrium state (2). An infinite set of equations is found introducing the Fourier transform 
of (4) 

a,S, t bn-lSn-l + bn+iSo+l = ce, + ge.+l (6) 
where n is an integer, 6 = I/kBT, and where 

E n  = E P + ~ Q  
e, = Enexp(-i2&) 
S. = 8(Si+2nQ) exp(-i2gn). 

From (7) we see that the uniform field is indirectly coupled to an infinite set of 
interacting normal modes in the incommensurate phase. The fluctuation spectrum in the 
incommensurate case, described by (7), is much more complex in the exact mathematical 
sense than in the commensurate case. 

3. Paraphase 

For reference purposes let us discuss the response of the paraphase. Above the critical 
temperature TE, mean values of the pseudospins are zero. The dielectric susceptibility, 
which is in general defined here as 

x = (2@Z8(S:))/YutE 

for a homogeneous electric field with amplitude E, takes for the paraphase the well known 
form (q  = 0): 

The usual Debyerelaxation-type behaviour is found. 
Numerical values of the parameters used in our model calculations here are appropriate 

to model NaNO2, where the nearest-neighbour interactions in the modulation direction are 
ferroelectric, J I  % 81 K, the next-nearest-neighbour ones are antiferroelectric, Jz = -26 K, 
and the nearest-neighbour interactions in the directions perpendicular to the modulation 
direction are ferroelectric, J&= 410 K. To estimate these values of interaction constants 
we have used values [17] of the critical temperature Tc = 438.69 K, the Curie-Weiss 
temperature associated with the direct para-ferroelectric (virtual) transition is To = 437.41 K 
and the high-temperature relaxation time constant is estimated to be TI = 0.7922 K-', The 
corresponding 6 parameter takes the value Q. Note that the transition temperature for the 
incommensurate to ferroelectric phase transition is 436.24 K. We use also the definition of the 
virtual transition temperature: kTo = J(0)/4. The last-mentioned temperature is identified 
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with the critical temperature observed in the static dielectric constant measurements and 
in the paraphase relaxation frequency behaviour. In figure 2 the frequency dependence of 
the imaginary part of the paraphase susceptibility for four temperatures in NaNOz with 
Q/2z and temperature T, =438.69 K is shown. With increasing temperature the 
corresponding curves at T, + 50 K (I), T, + 100 K (a), Tc + 150 K (3) and T, + 200 K (4) 
change their shape. Note that the curves do not mutually intersect in the displayed frequency 
region. Note that the height of the peak increases with decreasing temperature. The peak 
frequency and the halfwidth of the peak slightly decrease with decreasing temperature: the 
two quantities are proportional to each other; the proportionality coefficient is 2 f i .  

S = 

The paraphase relaxation time rFa is given by 

At high temperatures this relaxation time is equal to the longitudinal relaxation time T I ,  
The effective relaxation time re6 is equal to the inverse frequency at which Imx has a 
peak when the dynamics is characterized by the single-relaxation-mode behaviour. Later 
we shall discuss how the effective relaxation frequency may be defined when the system is 
characterized by at least two relaxation modes. 

In figure 3 we display the temperature dependence of rei' above the critical temperature 
T,. We see that there exists a decrease from its high-temperature value l/z to the value 
(1/T1)(1 - To/TJ at Tc. For NaN02, in which J ( 0 )  t 0. this behaviour corresponds to that 
observed by Ham [18, 191. Note that in general interactions between pseudospins modify 
the paraphase relaxation time if J(0) # 0. 
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Figure 4. The frequency dependence of the real part of the paraphaw susceptibility far four 
temperatures: NaN02 with 6 = 4 and lempenture T, = 438.69 K T, + 50 K ( I ) .  T, + 100 K 
(3, T, + 150 K 0). T, + 200 K (4). 

The frequency dependence of the real part of the susceptibility is displayed in figure 4 
for four temperatures in NaNOz with 8 = and temperature Tc = 438.69 K Tc + 50 K (I), 
T, + 100 K (2). Tc + 150 K (3), Tc + 200 K (4). 

At frequencies higher than the peak frequency there exists almost no temperature change. 
At lower frequencies the real part of the susceptibility increases with decreasing temperature. 

4. Incommensurate phase 

Let us now discuss the behaviour of the complex susceptibility in the form appropriate for 
comparison with experiments. Below the critical temperature T,, the dielectric susceptibility 
behaviour is modified due to the modified equilibrium state leading to modified excitations. 
Not very far from Tc the pseudospin amplitude mean value is small. In this temperature 
region it is convenient to use a perturbation analysis to describe influence of the modulated 
equilibrium state on the response of the system. We use the amplitude of the order parameter 
S as the perturbation parameter. 

Let us first neglect coupling of the q = 0 mode to other modes in (7). This coupling 
would be absent in the uniform equilibrium state. The dielectric susceptibility behaviour is 
found to be 

p2(1 - 2 S 2 ) / T i k ~ T  
IW + I /TI  - [BJ(O)/4Ti](1 - 2s') xioc = . 

This equation describes a Debye-relaxation-type dispersion. The C constant in xinc (9) is 
modified with respect to its paraphase value by the factor (1 - 2Sz) which decreases with 
decreasing temperature. We note that for the uniform phase (with Q = 0) two in this factor 
should be replaced by four. 

If the value of the modulation wavevector Q is commensurate, the lock-in energy 
becomes essential and a finite number of modes So,*],,,, would contribute to the 
susceptibility. If Q takes the incommensurate value then theoretically all higher-order terms 



Multirelaxation response of modulated phases 5005 

will contribute to the susceptibility. The dielectric susceptibility of the incommensurate 
phase up to the fourth order in S has the form [5] 

where 

PP 
2i-I 

CO = - 

2 c = c o - c 1 S .  

Let us note that the expansion in powers of S2 is valid when the following condition is 
fulfilled: 

This condition is satisfied for sufficiently large frequencies, which however still satisfy 
the condition to be smaller than the inverse high-temperature relaxation time T, as it is 
considered in this paper. At very low frequencies another approach should be used. 

We have studied the dielectric susceptibility (10) behaviour using numerical constants 
appropriate to NaN02. Between T, = 438.6 K and G = 437.4 K there exists a stable 
modulated phase. The frequency dependence of the real and imaginary parts of the dielectric 
susceptibility calculated for both cases when the mode coupling is neglected (1) and when 
the mode coupling is taken into account (2) up to the fourth order in S is  shown in figure 
5 and figure 6. 

There is a correction to the susceptibility in both cases. Note that a relatively pronounced 
correction is on the low-frequency side of the peak in Imx. The corrected value of Imx 
of the susceptibility due to coupling is shifted above the uncorrected one. The contribution 
to I m x  of the susceptibility due to fourth-order terms leads to a higher absorption peak 
and an increase of this quantity in the low-frequency tail, see figure 6. Thus we see a 
clear tendency to create asymmetly of the peak present in the paraphase, namely on the 
low-frequency side. 

In figure 7 the difference between Imx calculated with and without coupling is 
displayed. We see that the coupling contribution has a peaklike shape and a tail to low 
frequencies. The peak maximum is at lower frequency than the peak maximum of Im x. 
This result is a basis for our expectation that the coupling to higher-order modes influences 
mainly the low-frequency dynamics. 

The difference between the real part of the susceptibility Rex calculated with and 
without coupling again displays changes that are most pronounced at low frequencies, where 
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Figure 5. The frequency dependence of the real pari 
of the dielectric susceptibility: ( I )  the mode coupling 
is neglected and (2) the mode coupling is taken into 
account up to the founh order in S for NaNOa with 
6 = and for temperature Tit I K = 438.41 K. 

7,W 7.25 7.50 7.75 6.W 8.25 8.50 8.75 

log(*) 

Figure 6. The frequency dependence of the imaginary 
p x i  of the dielectdc susceplibility: (1) the mode 
coupling is neglected and (2) the mode coupling is taken 
into account up to the fourth order in S lor: NaNOz with 
S = + and for temperature Tit 1 K = 438.41 K. 

an increase is found when coupling is switched on. Near the peak frequency a small dip to 
negative values is found in both cases. At high frequencies the difference is vanishing. 

From general time symmetry arguments it follows that we can define the effective 
relaxation frequency for any system, which may be expressed via the real and imaginary 
parts of the susceptibility transforming the susceptibility into the Debyelike form: 

C(4 
= i o +  1/r(o)’ 

Here the effective (real) relaxation time is 

OX’ 
redo) x N  - 1 

and the effective (real) constant C(o) can be expressed as 

In figure 8 the temperature dependence of the effective relaxation frequency rei1 is 
displayed for NaNOz for 6 = 4 at low frequencies; the frequency corresponding to curve 
(1) is 2.5 times lower than the frequency corresponding to curve (2). The same frequency 
dependence was observed by Hatta [IS, 191. See also [17]. Mentioned measurements were 
made for a few different frequencies only. It would be desirable to perform systematic 
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Figure 7. The difference between ImX calculated with 
(subscript 4) and without (0) coupling is displayed: 
NaNO, with S = 1 m d  for temperature Tr t I K = 
438.41 K. 

Flgure S. The temperature dependence of the effective 
relaation frequency r;d is displayed for Na.NO2 for 
S = at low frequencies: the frequency componding 
to curve ( I )  is 2.5 times lower than the frequency 
corresponding U) curve (2). 

measurements for more frequencies to understand how the temperature dependence of the 
relaxation time varies with frequency. This is the reason why we display the frequency 
dependence of the effective relaxation frequency 72 in figure 9. It is interesting to display 
also the temperature (in figure 10) and frequency (in figure 11) dependences of the effective 
constant C. 

The temperature and frequency dependences of the effective relaxation frequency and 
the frequency dependence of the effective constant C originate in the multirelaxation 
processes. Both quantities are frequency independent in the single-Debye-relaxation process. 
The incommensurate structures display complex frequency-dependent behaviour of both 
quantities due to the coupling between modes. Such a complex behaviour was observed 
in several dielecwics with incommensurate phases, While similar behaviour is observed 
also in glasses of the RADP type, their origin is more probably due to dynamics of defects 
and cluster walls, and not due to dynamics of frozen-in incommensurate regions. It is 
interesting that there exists a frequency region (see figures 8-11) between low-frequency 
and high-frequency behaviour. Above this region there are fast relaxation processes, while 
below it  the relaxation processes are slower (the effective relaxation frequency is lower). 
The different behaviour may be explained by different relaxation times of processes which 
are effective above and below this region. 
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Figure 9. The frequency dependence of he effective 
relaxation r;$ is displayed for NaN02 for 6 = 1 for 
tempemlure Tr + 1 K = 438.41 K. 
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Figure 10. The temperature dependcnce ofthe effective 
C constant is displayed for NaN@ for S = 4 at low 
frequencies: the frequency corresponds to curve ( I )  in 
figure 8. 
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Figure 11. The frequency dependence o f  the effective C constant is displayed lor NaNOz for 
S = at t e m p ”  rt + 1 K = 438.41 K. 

5. Discussion 

5.1. General 

Interactions of the uniform mode with higher-order modes due to the incommensurately 
modulated equilibrium state change the usual relaxation behaviour to a more complex 
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one. A multirelaxation character should be present even in the single-plane-wave lit. 
In this paper we took into account only several modes coupled to the basic uniform one. 
The incommensurate equilibrium state leads, however, to coupling of the uniform mode 
with an infinite number of modes. One may then expect that their contributions to the 
susceptibility will change substantially its behaviour. Thus the perturbation calculations 
used in previous section cannot give a satisfying description of the dynamics of this phase 
at lower temperatures and frequencies. 

5.2. NaNOz 

Sodium nitrite crystallizes in the body-centred orthorhombic phase. Between T, = 438.6 K 
and r f  = 437.4 K there exist a stable modulated phase [17]. The origin of this phase is 
a competition of the antiferroelectric coupling between the next-nearest neighbours and 
the ferroelectric coupling between the nearest neighbours. This is consistent with the 
study of interdipolar interactions performed by Yamada and Yamada [13]. The modulation 
wavevector was found to vary with temperature from at E.  There is no evidence 
of commensurate plateaux at simple rational values of the modulation wave vector. The 
orientational probability of the NO? dipoles can be described as a simple sine wave in the 
whole region of the modulated phase. The static dielectric susceptibility does not diverge at 
T, due to ordering at the finite wave vector. It increases by more than one order of magnitude 
as T --f 7''. Deviation from the Curie-Weiss law is observed below 503 K. The dynamics 
of fluctuations is characterized by slow relaxational processes, there is no indication of 
a soft phonon mode. For a system of king spins close to its ordering temperature it is 
generally expected [I71 that the dynamic order parameter susceptibility can be described in 
terms of a single Debye relaxation. Suzuki and Kubo [ZO] have found that the relaxation 
time diverges at T, for the critical wave vector of modulation. A monodispersive dielectric 
relaxation in the paraelectric phase was found in [21]. Hatta I181 verified the validity of 
the single-Debyerelaxation model above T,. He was able to fit his measurements to 

at T, to 

zpp... = 2.4 x ~O-~(T - S .  

The temperature TO is the same as the temperature found from the fit of the static 
susceptibility above Tc to the CurieWeiss law. 

Below Tc one expects two relaxation mechanisms with relaxation times corresponding 
to the amplitude and phase fluctuations. Both relaxation times are expected to be frequency 
independent [17]. An attempt to fit relaxation time to a single effective relaxation time leads 
to its frequency dependence. While the temperature behaviour of the effective relaxation 
time resembles that of the phase relaxations, according to the authors of [17] there is 
no reason why phase relaxation should dominate the dielectric response at q = 0 of the 
modulated structure. The frequency dependence of Im x in the temperature region of the 
modulated phase shows clearly, see figure 1 in [18], a shift of the weight of I m x  with 
decreasing temperature to lower frequencies. As Hatta noted, below T, -0.5 the distribution 
of the relaxation times gradually broadens. Above this temperature a single-relaxation-time 
process takes place. Such a single-relaxation time picture would be consistent with the 
analysis of the king model dynamic susceptibility of Suzuki and Kubo [ZO], in which 
coupling of any given mode to other modes is neglected. 

According to our qualitative results displayed mainly in figure 8-1 1, it is possible to 
interpret the temperature and frequency dependence of the effective relaxation frequency 
observed by Ham [18], see also [ 171. Indeed there is a correspondence between our theory 
and the results of the experiment: in the high-temperature region a single relaxation process 
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takes place, and the relaxational frequency is proportional to the temperature difference 
T - q; in the temperature region immediately below the transition temperature Tc a small 
local maximum in the temperature dependence of the effective relaxation frequency occurs; 
in the temperature region further below the transition temperature TE a decrease of the 
effective relaxation frequency with decreasing temperature occurs; below the transition 
temperature T, the effective relaxation frequency is frequency dependent: its value increases 
with increasing frequency. It would be of interest to perform a systematic experimental test 
of our theory, especially concerning the frequency dependence of the effective relaxation 
frequency. 

5.3. Other systems 

A simple lattice model with two sets of coupled Ising spins may explain many structural 
phase bansitions including those in modulated A‘A”BX4 compounds [22]. In general one 
may expect that our discussion of the polydispersive processes applies to these systems too. 

s at 0.5 K above the incommensurate-ferroelectric phase 
transition in RbHp(SeO3)z has a typical value for order-disorder systems. The width of the 
distribution of relaxation times determined by the exponent B in Cole-Cole diagrams is 
found to be in the range 0.9 < ,6 < 1 within experimental accuracy 8s E 0.1 [23]. This 
may also indicate a slightly polydispersive behaviour. 

The polydispersive dielectric process has been found also in the systems KzSeO4 
and RbzZnCI4, [24]. These materials are characterized by the relaxational frequencies 
of about 100 MHz at the incommensurate-ferroelec~c phase transition temperature. The 
dielectric relaxation of both materials is described by a polydispersive process. Dielectric 
polydispersion is related, by the authors, to non-linear systems of discommensurations, 
where various kinds of mode are expected to be present. We note that such an intuitive 
picture is fully compatible with our model calculations. Thus these experimental results 
are in qualitative agreement with the results of our study although the systems are of the 
displacive type. 

The monodispersive dielectric process of Debye type in the temperature range of the 
incommensurate phase except for the close vicinity of the incommensurate-commensurate 
transition was reported in [N(CH&)zZnC14, [=I. Again, however, two dispersions are 
present: above 1 MHz frequency range the Debye relaxation is observed and at low 
frequencies another one. The latter one becomes pronounced as temperature is lowered 
to Tc but the dispersion frequency is reported to be almost temperature independent. The 
former process is thought to be connected with the motion of discommensurations while 
the latter one is not (which was observed by means of the experiment on the signal field 
dependence). It is found that at temperatures between Tc + 0.02 K and T, + 0.5 K the 
exponent p is within the range 0.84.92; at higher temperatures above T, + 0.5 K a single 
relaxation time is found. The phase mode motion of discommensurations softens when the 
temperature approaches Tc. It would be interesting to perform experiments with the above- 
mentioned crystals in which the temperature and frequency dependence of the effective 
relaxational frequency was observed and to compare it with general expectations based on 
our theory. 

The relaxational time 5 x 
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